Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2452: 317-351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35554915

RESUMO

The unprecedented scientific achievements in combating the COVID-19 pandemic reflect a global response informed by unprecedented access to data. We now have the ability to rapidly generate a diversity of information on an emerging pathogen and, by using high-performance computing and a systems biology approach, we can mine this wealth of information to understand the complexities of viral pathogenesis and contagion like never before. These efforts will aid in the development of vaccines, antiviral medications, and inform policymakers and clinicians. Here we detail computational protocols developed as SARS-CoV-2 began to spread across the globe. They include pathogen detection, comparative structural proteomics, evolutionary adaptation analysis via network and artificial intelligence methodologies, and multiomic integration. These protocols constitute a core framework on which to build a systems-level infrastructure that can be quickly brought to bear on future pathogens before they evolve into pandemic proportions.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Inteligência Artificial , Humanos , Pandemias/prevenção & controle , Biologia de Sistemas
2.
Elife ; 112022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35014952

RESUMO

Early in the SARS-CoV-2 pandemic, we compared transcriptome data from hospitalized COVID-19 patients and control patients without COVID-19. We found changes in procoagulant and fibrinolytic gene expression in the lungs of COVID-19 patients (Mast et al., 2021). These findings have been challenged based on issues with the samples (Fitzgerald and Jamieson, 2022). We have revisited our previous analyses in the light of this challenge and find that these new analyses support our original conclusions.


Assuntos
COVID-19 , SARS-CoV-2 , Anticoagulantes , Humanos , Pulmão , Transcriptoma
3.
Elife ; 102021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33683204

RESUMO

Extensive fibrin deposition in the lungs and altered levels of circulating blood coagulation proteins in COVID-19 patients imply local derangement of pathways that limit fibrin formation and/or promote its clearance. We examined transcriptional profiles of bronchoalveolar lavage fluid (BALF) samples to identify molecular mechanisms underlying these coagulopathies. mRNA levels for regulators of the kallikrein-kinin (C1-inhibitor), coagulation (thrombomodulin, endothelial protein C receptor), and fibrinolytic (urokinase and urokinase receptor) pathways were significantly reduced in COVID-19 patients. While transcripts for several coagulation proteins were increased, those encoding tissue factor, the protein that initiates coagulation and whose expression is frequently increased in inflammatory disorders, were not increased in BALF from COVID-19 patients. Our analysis implicates enhanced propagation of coagulation and decreased fibrinolysis as drivers of the coagulopathy in the lungs of COVID-19 patients.


Assuntos
Coagulação Sanguínea/genética , COVID-19/patologia , Fibrina/genética , Pulmão/patologia , SARS-CoV-2 , Anticoagulantes/metabolismo , Líquido da Lavagem Broncoalveolar , COVID-19/genética , COVID-19/metabolismo , Receptor de Proteína C Endotelial/genética , Receptor de Proteína C Endotelial/metabolismo , Fibrina/metabolismo , Expressão Gênica , Humanos , Sistema Calicreína-Cinina/genética , Calicreínas/genética , Calicreínas/metabolismo , Cininas/genética , Cininas/metabolismo , Pulmão/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Trombomodulina/genética , Trombomodulina/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
4.
Elife ; 92020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633718

RESUMO

Neither the disease mechanism nor treatments for COVID-19 are currently known. Here, we present a novel molecular mechanism for COVID-19 that provides therapeutic intervention points that can be addressed with existing FDA-approved pharmaceuticals. The entry point for the virus is ACE2, which is a component of the counteracting hypotensive axis of RAS. Bradykinin is a potent part of the vasopressor system that induces hypotension and vasodilation and is degraded by ACE and enhanced by the angiotensin1-9 produced by ACE2. Here, we perform a new analysis on gene expression data from cells in bronchoalveolar lavage fluid (BALF) from COVID-19 patients that were used to sequence the virus. Comparison with BALF from controls identifies a critical imbalance in RAS represented by decreased expression of ACE in combination with increases in ACE2, renin, angiotensin, key RAS receptors, kinogen and many kallikrein enzymes that activate it, and both bradykinin receptors. This very atypical pattern of the RAS is predicted to elevate bradykinin levels in multiple tissues and systems that will likely cause increases in vascular dilation, vascular permeability and hypotension. These bradykinin-driven outcomes explain many of the symptoms being observed in COVID-19.


In late 2019, a new virus named SARS-CoV-2, which causes a disease in humans called COVID-19, emerged in China and quickly spread around the world. Many individuals infected with the virus develop only mild, symptoms including a cough, high temperature and loss of sense of smell; while others may develop no symptoms at all. However, some individuals develop much more severe, life-threatening symptoms affecting the lungs and other parts of the body including the heart and brain. SARS-CoV-2 uses a human enzyme called ACE2 like a 'Trojan Horse' to sneak into the cells of its host. ACE2 lowers blood pressure in the human body and works against another enzyme known as ACE (which has the opposite effect). Therefore, the body has to balance the levels of ACE and ACE2 to maintain a normal blood pressure. It remains unclear whether SARS-CoV-2 affects how ACE2 and ACE work. When COVID-19 first emerged, a team of researchers in China studied fluid and cells collected from the lungs of patients to help them identify the SARS-CoV-2 virus. Here, Garvin et al. analyzed the data collected in the previous work to investigate whether changes in how the body regulates blood pressure may contribute to the life-threatening symptoms of COVID-19. The analyses found that SARS-CoV-2 caused the levels of ACE in the lung cells to decrease, while the levels of ACE2 increased. This in turn increased the levels of a molecule known as bradykinin in the cells (referred to as a 'Bradykinin Storm'). . Previous studies have shown that bradykinin induces pain and causes blood vessels to expand and become leaky which will lead to swelling and inflammation of the surrounding tissue. In addition, the analyses found that production of a substance called hyaluronic acid was increased and the enzymes that could degrade it greatly decreased. Hyaluronic acid can absorb more than 1,000 times its own weight in water to form a hydrogel. The Bradykinin-Storm-induced leakage of fluid into the lungs combined with the excess hyaluronic acid would likely result in a Jello-like substance that is preventing oxygen uptake and carbon dioxide release in the lungs of severely affected COVID-19 patients. Therefore, the findings of Garvin et al. suggest that the Bradykinin Storm may be responsible for the more severe symptoms of COVID-19. Further experiments identified several existing medicinal drugs that have the potential to be re-purposed to treat the Bradykinin Storm. A possible next step would be to carry out clinical trials to assess how effective these drugs are in treating patients with COVID-19. In addition, understanding how SARS-Cov-2 affects the body will help researchers and clinicians identify individuals who are most at risk of developing life-threatening symptoms.


Assuntos
Bradicinina/metabolismo , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/terapia , Pneumonia Viral/metabolismo , Pneumonia Viral/terapia , Sistema Renina-Angiotensina/fisiologia , Enzima de Conversão de Angiotensina 2 , Angiotensinas/metabolismo , Betacoronavirus/isolamento & purificação , Líquido da Lavagem Broncoalveolar/química , COVID-19 , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Feminino , Humanos , Masculino , Pandemias , Peptidil Dipeptidase A/biossíntese , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/genética , Pneumonia Viral/virologia , Renina/metabolismo , SARS-CoV-2 , Transcriptoma , Vasodilatação
5.
Appl Environ Microbiol ; 79(3): 867-76, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23183968

RESUMO

Lignocellulosic biomass is a promising feedstock to produce biofuels and other valuable biocommodities. A major obstacle to its commercialization is the high cost of degrading biomass into fermentable sugars, which is typically achieved using cellulolytic enzymes from Trichoderma reesei. Here, we explore the use of microbes to break down biomass. Bacillus subtilis was engineered to display a multicellulase-containing minicellulosome. The complex contains a miniscaffoldin protein that is covalently attached to the cell wall and three noncovalently associated cellulase enzymes derived from Clostridium cellulolyticum (Cel48F, Cel9E, and Cel5A). The minicellulosome spontaneously assembles, thus increasing the practicality of the cells. The recombinant bacteria are highly cellulolytic and grew in minimal medium containing industrially relevant forms of biomass as the primary nutrient source (corn stover, hatched straw, and switch grass). Notably, growth did not require dilute acid pretreatment of the biomass and the cells achieved densities approaching those of cells cultured with glucose. An analysis of the sugars released from acid-pretreated corn stover indicates that the cells have stable cellulolytic activity that enables them to break down 62.3% ± 2.6% of the biomass. When supplemented with beta-glucosidase, the cells liberated 21% and 33% of the total available glucose and xylose in the biomass, respectively. As the cells display only three types of enzymes, increasing the number of displayed enzymes should lead to even more potent cellulolytic microbes. This work has important implications for the efficient conversion of lignocellulose to value-added biocommodities.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Biomassa , Celulases/genética , Celulases/metabolismo , Engenharia Metabólica , Plantas/microbiologia , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Carboidratos/análise , Clostridium cellulolyticum/enzimologia , Clostridium cellulolyticum/genética , Meios de Cultura/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...